Tính năng, đặc điểm Mã hóa video hiệu quả cao

HEVC được thiết kế để cải thiện đáng kể hiệu quả mã hóa so với H.264 / MPEG-4 AVC HP, tức là giảm một nửa yêu cầu bitrate với chất lượng hình ảnh tương đương, với chi phí tăng độ phức tạp tính toán.[10] HEVC được thiết kế với mục tiêu cho phép nội dung video có tỷ lệ nén dữ liệu lên tới 1000: 1.[116] Tùy thuộc vào yêu cầu ứng dụng, bộ mã hóa HEVC có thể đánh đổi độ phức tạp tính toán, tốc độ nén, độ mạnh của lỗi và thời gian trễ mã hóa.[10] Hai trong số các tính năng chính trong đó HEVC được cải thiện so với H.264 / MPEG-4 AVC là hỗ trợ cho video có độ phân giải cao hơn và phương pháp xử lý song song được cải thiện.[10]

HEVC được nhắm mục tiêu vào các màn hình HDTV và hệ thống chụp nội dung thế hệ tiếp theo có tốc độ khung hình quét liên tục và độ phân giải hiển thị từ QVGA (320x240) đến 4320p (7680x4320), cũng như chất lượng hình ảnh được cải thiện về mức độ nhiễu, không gian màu và độ động phạm vi.[21][117][118][119]

Lớp mã hóa video

Lớp mã hóa video HEVC sử dụng cùng một phương pháp "lai" được sử dụng trong tất cả các tiêu chuẩn video hiện đại, bắt đầu từ H.261, trong đó nó sử dụng dự đoán giữa các hình ảnh / nội bộ và mã hóa chuyển đổi 2D.[10] Trước tiên, bộ mã hóa HEVC tiến hành bằng cách chia một hình ảnh thành các vùng hình khối cho hình ảnh đầu tiên hoặc hình ảnh đầu tiên của một điểm truy cập ngẫu nhiên, sử dụng dự đoán trong hình ảnh.[10] Dự đoán hình ảnh nội bộ là khi dự đoán của các khối trong hình chỉ dựa trên thông tin trong hình ảnh đó.[10] Đối với tất cả các hình ảnh khác, dự đoán giữa các hình ảnh được sử dụng, trong đó thông tin dự đoán được sử dụng từ các hình ảnh khác.[10] Sau khi các phương pháp dự đoán kết thúc và hình ảnh đi qua các bộ lọc vòng lặp, biểu diễn hình ảnh cuối cùng được lưu trữ trong bộ đệm hình ảnh được giải mã.[10] Hình ảnh được lưu trữ trong bộ đệm hình ảnh được giải mã có thể được sử dụng để dự đoán các hình ảnh khác.[10]

HEVC được thiết kế với ý tưởng rằng video quét lũy tiến sẽ được sử dụng và không có công cụ mã hóa nào được thêm vào riêng cho video xen kẽ.[10] công cụ mã hóa cụ thể xen kẽ, như MBAFF và PAFF, không được hỗ trợ trong HEVC.[120] HEVC thay vào đó gửi siêu dữ liệu cho biết cách video xen kẽ được gửi.[10] Video xen kẽ có thể được gửi bằng cách mã hóa từng khung hình thành một hình ảnh riêng biệt hoặc bằng cách mã hóa từng trường thành một hình ảnh riêng biệt.[10] Đối với HEVC video xen kẽ có thể thay đổi giữa mã hóa khung và mã hóa trường bằng cách sử dụng Trường khung thích ứng chuỗi (SAFF), cho phép thay đổi chế độ mã hóa cho từng chuỗi video.[121] Điều này cho phép gửi video xen kẽ với HEVC mà không cần các quá trình giải mã xen kẽ đặc biệt được thêm vào bộ giải mã HEVC.[10]

Không gian màu

Tiêu chuẩn HEVC hỗ trợ các không gian màu như phim chung, NTSC, PAL, Rec. 601, Rec. 709, Rec. 2020, Rec. 2100, NHỎ   170M, NHỎ   240M, sRGB, sYCC, xvYCC, XYZ và không gian màu được chỉ định bên ngoài.[15] HEVC hỗ trợ các biểu diễn mã hóa màu như RGB, YCbCr và YCoCg.[15]

Công cụ mã hóa

Đơn vị mã hóa

HEVC thay thế 16 × 16 điểm ảnh macroblocks, được sử dụng với tiêu chuẩn trước đó, với các đơn vị cây mã hóa (CTUs) mà có thể sử dụng các cấu trúc khối lớn hơn lên đến 64x64 mẫu và có thể tốt hơn tiểu phân vùng hình thành những cấu trúc có kích thước khác nhau.[10] [122] HEVC ban đầu chia hình ảnh thành CTU có thể là 64 × 64, 32 × 32 hoặc 16 × 16 với kích thước khối pixel lớn hơn thường làm tăng hiệu quả mã hóa.[10]

Công cụ xử lý song song

  • Gạch cho phép hình ảnh được chia thành một lưới các khu vực hình chữ nhật có thể được giải mã / mã hóa độc lập. Mục đích chính của gạch là cho phép xử lý song song.[10] Gạch có thể được giải mã độc lập và thậm chí có thể cho phép truy cập ngẫu nhiên vào các vùng cụ thể của hình ảnh trong luồng video.[10]
  • Xử lý song song mặt sóng (WPP) là khi một lát được chia thành các hàng CTU trong đó hàng đầu tiên được giải mã bình thường nhưng mỗi hàng bổ sung yêu cầu các quyết định được đưa ra ở hàng trước.[10] WPP có bộ mã hóa entropy sử dụng thông tin từ hàng CTU trước đó và cho phép phương pháp xử lý song song có thể cho phép nén tốt hơn gạch.[10]
  • Gạch và WPP được cho phép, nhưng là tùy chọn.[10] [15] Nếu có gạch, chúng phải cao ít nhất 64 pixel và rộng 256 pixel với giới hạn cụ thể về số lượng gạch cho phép.[10] [15]
  • Phần lớn, các lát có thể được giải mã độc lập với nhau với mục đích chính là các ô được đồng bộ hóa lại trong trường hợp mất dữ liệu trong luồng video.[10] lát cắt có thể được định nghĩa là khép kín trong dự đoán đó không được thực hiện trên các ranh giới lát.[10] Khi lọc trong vòng lặp được thực hiện trên ảnh, thông tin qua các ranh giới lát có thể được yêu cầu.[10] lát cắt là CTU được giải mã theo thứ tự quét raster và các loại mã hóa khác nhau có thể được sử dụng cho các lát như loại I, loại P hoặc loại B.[10]
  • Các lát phụ thuộc có thể cho phép dữ liệu liên quan đến gạch hoặc WPP được hệ thống truy cập nhanh hơn so với khi toàn bộ lát cắt phải được giải mã.[10] Mục đích chính của các lát phụ thuộc là cho phép mã hóa video có độ trễ thấp do độ trễ thấp hơn.[10]

Các công cụ mã hóa khác

Mã hóa Entropy

HEVC sử dụng thuật toán mã hóa số học nhị phân thích ứng theo ngữ cảnh (CABAC) tương tự về cơ bản với CABAC trong H.264 / MPEG-4 AVC.[10] CABAC là phương pháp mã hóa entropy duy nhất được phép trong HEVC trong khi có hai phương thức mã hóa entropy được cho phép bởi H.264 / MPEG-4 AVC.[10] CABAC và mã hóa entropy của các hệ số biến đổi trong HEVC được thiết kế cho thông lượng cao hơn H.264 / MPEG-4 AVC,[123] trong khi duy trì hiệu suất nén cao hơn cho kích thước khối biến đổi lớn hơn so với các phần mở rộng đơn giản.[124] Ví dụ, số lượng thùng được mã hóa theo ngữ cảnh đã giảm 8 × và chế độ bỏ qua CABAC đã được cải thiện về mặt thiết kế để tăng thông lượng.[10] [123][125] Một cải tiến khác với HEVC là sự phụ thuộc giữa dữ liệu được mã hóa đã được thay đổi để tăng thêm thông lượng.[10] [123] Mô hình bối cảnh trong HEVC cũng đã được cải thiện để CABAC có thể chọn bối cảnh tốt hơn để tăng hiệu quả khi so sánh với H.264 / MPEG-4 AVC.[10]

Dự đoán nội bộHEVC có 33 chế độ dự đoán nội bộ

HEVC chỉ định 33 chế độ định hướng cho dự đoán bên trong so với 8 chế độ định hướng cho dự đoán bên trong được chỉ định bởi H.264 / MPEG-4 AVC.[10] HEVC cũng chỉ định các chế độ dự đoán nội bộ và dự đoán phẳng DC.[10] Chế độ dự đoán nội bộ DC tạo ra giá trị trung bình bằng cách lấy trung bình các mẫu tham chiếu và có thể được sử dụng cho các bề mặt phẳng.[10] Chế độ dự đoán phẳng trong HEVC hỗ trợ tất cả các kích thước khối được xác định trong HEVC trong khi chế độ dự đoán phẳng trong H.264 / MPEG-4 AVC bị giới hạn ở kích thước khối 16x16 pixel.[10] Các chế độ dự đoán nội bộ sử dụng dữ liệu từ các khối dự đoán lân cận đã được giải mã trước đó trong cùng một bức tranh.[10]

Bù chuyển động

Để nội suy các vị trí mẫu luma phân đoạn, HEVC sử dụng ứng dụng có thể tách rời của phép nội suy nửa mẫu một chiều với bộ lọc 8 vòi hoặc nội suy mẫu một phần tư với bộ lọc 7 vòi trong khi so sánh, H.264 / MPEG-4 AVC sử dụng quy trình hai giai đoạn trước tiên lấy giá trị tại các vị trí nửa mẫu bằng cách sử dụng phép nội suy 6 chiều một chiều tách rời, sau đó làm tròn số nguyên và sau đó áp dụng phép nội suy tuyến tính giữa các giá trị tại các vị trí nửa mẫu gần đó để tạo giá trị tại các vị trí mẫu quý.[10] HEVC đã được cải thiện độ chính xác do bộ lọc nội suy dài hơn và loại bỏ lỗi làm tròn trung gian.[10] Đối với video 4: 2: 0, các mẫu sắc độ được nội suy với bộ lọc 4 chiều có thể tách rời để tạo độ chính xác của mẫu thứ tám, trong khi so sánh, H.264 / MPEG-4 AVC chỉ sử dụng song tuyến 2 chạm bộ lọc (cũng với độ chính xác mẫu thứ tám).[10]

Như trong H.264 / MPEG-4 AVC, dự đoán có trọng số trong HEVC có thể được sử dụng với dự đoán đơn (trong đó sử dụng một giá trị dự đoán duy nhất) hoặc dự đoán bi (trong đó các giá trị dự đoán từ hai khối dự đoán được kết hợp).[10]

Dự đoán vector chuyển động

HEVC xác định phạm vi 16 bit đã ký cho cả vectơ chuyển động ngang và dọc (MV).[15] [126][127][128] Điều này đã được thêm vào HEVC tại cuộc họp HEVC tháng 7 năm 2012 với các biến mvLX.[15] [126][127][128] HEVC ngang / dọc MV có một loạt các -32.768-32.767 mà trao quý điểm ảnh chính xác được sử dụng bởi HEVC cho phép một loạt MV của -8.192-8191,75 mẫu luma.[15] [126][127][128] này so với H.264 / MPEG-4 AVC cho phép cho một loạt MV ngang của -2.048-2047,75 mẫu luma và một loạt MV dọc của -512 đến 511,75 mẫu luma.[127]

HEVC cho phép hai chế độ MV là Dự đoán Vector chuyển động nâng cao (AMVP) và chế độ hợp nhất.[10] AMVP sử dụng dữ liệu từ hình ảnh tham chiếu và cũng có thể sử dụng dữ liệu từ các khối dự đoán liền kề.[10] Chế độ hợp nhất cho phép các MV được kế thừa từ các khối dự đoán lân cận.[10] Chế độ hợp nhất trong HEVC tương tự như chế độ suy luận chuyển động "bỏ qua" và "trực tiếp" trong H.264 / MPEG-4 AVC nhưng có hai cải tiến.[10] Cải tiến đầu tiên là HEVC sử dụng thông tin chỉ mục để chọn một trong một số ứng cử viên có sẵn.[10] Cải tiến thứ hai là HEVC sử dụng thông tin từ danh sách ảnh tham chiếu và chỉ số ảnh tham chiếu.[10]

Biến đổi nghịch đảo

HEVC chỉ định bốn kích thước đơn vị biến đổi (TU) là 4 x 4, 8 x 8, 16x16 và 32x32 để mã hóa dự đoán còn lại.[10] Một CTB có thể được phân chia đệ quy thành 4 TU trở lên.[10] TU sử dụng các hàm cơ bản số nguyên tương tự như biến đổi cosine rời rạc (DCT).[10] Ngoài ra, các khối biến đổi luma 4x4 thuộc về một vùng mã hóa nội bộ được biến đổi bằng cách sử dụng một biến đổi số nguyên có nguồn gốc từ biến đổi sin rời rạc (DST).[10] Điều này giúp giảm tốc độ bit 1% nhưng bị giới hạn ở các khối biến đổi Luma 4x4 do lợi ích cận biên cho các trường hợp biến đổi khác.[10] Chroma sử dụng các kích thước TU giống như luma nên không có biến đổi 2x2 cho sắc độ.[10]

Bộ lọc vòng lặp

HEVC chỉ định hai bộ lọc vòng được áp dụng tuần tự, với bộ lọc gỡ lỗi (DBF) được áp dụng trước và bộ lọc bù thích ứng mẫu (SAO) được áp dụng sau đó.[10] Cả hai bộ lọc vòng lặp đều được áp dụng trong vòng dự đoán giữa các hình ảnh, tức là hình ảnh được lọc được lưu trữ trong bộ đệm hình ảnh được giải mã (DPB) làm tham chiếu cho dự đoán giữa các hình ảnh.[10]

Bộ lọc gỡ rối

DBF tương tự như DBF được sử dụng bởi H.264 / MPEG-4 nhưng với thiết kế đơn giản hơn và hỗ trợ tốt hơn cho xử lý song song.[10] Trong HEVC, DBF chỉ áp dụng cho lưới mẫu 8x8 trong khi với H.264 / MPEG-4 AVC, DBF áp dụng cho lưới mẫu 4x4.[10] DBF sử dụng lưới mẫu 8x8 vì nó không gây ra sự xuống cấp đáng chú ý và cải thiện đáng kể việc xử lý song song vì DBF không còn gây ra các tương tác xếp tầng với các hoạt động khác.[10] Một thay đổi khác là HEVC chỉ cho phép ba cường độ DBF từ 0 đến 2.[10] HEVC cũng yêu cầu DBF trước tiên áp dụng lọc ngang cho các cạnh dọc cho ảnh và chỉ sau đó, nó mới áp dụng lọc dọc cho các cạnh ngang để hình ảnh.[10] Điều này cho phép sử dụng nhiều luồng song song cho DBF.[10]

Mẫu bù thích ứng

Bộ lọc SAO được áp dụng sau DBF và được thiết kế để cho phép tái tạo tốt hơn các biên độ tín hiệu ban đầu bằng cách áp dụng các độ lệch được lưu trữ trong bảng tra cứu trong dòng bit.[10] [129] Mỗi CTB, bộ lọc SAO có thể được tắt hoặc áp dụng ở một trong hai chế độ: chế độ bù cạnh hoặc chế độ bù dải.[10] [129] Chế độ bù cạnh hoạt động bằng cách so sánh giá trị của mẫu với hai trong số tám lân cận của nó bằng một trong bốn mẫu gradient hướng.[10] [129] Dựa trên so sánh với hai nước láng giềng này, mẫu được phân thành một trong năm loại: tối thiểu, tối đa, một cạnh với mẫu có giá trị thấp hơn, cạnh với mẫu có giá trị cao hơn hoặc đơn điệu.[10] [129] Đối với mỗi trong bốn loại đầu tiên, áp dụng bù.[10] [129] Chế độ bù băng áp dụng một độ lệch dựa trên biên độ của một mẫu.[10] [129] Một mẫu được phân loại theo biên độ của nó thành một trong 32 dải (thùng biểu đồ).[10] [129] lệch được chỉ định cho bốn dải liên tiếp trong số 32 dải, bởi vì ở các khu vực bằng phẳng có xu hướng tạo dải, biên độ mẫu có xu hướng được phân cụm trong một phạm vi nhỏ.[10] [129] Bộ lọc SAO được thiết kế để tăng chất lượng hình ảnh, giảm các tạo tác tạo dải và giảm các tạo tác đổ chuông.[10] [129]

Phạm vi mở rộng

Tiện ích mở rộng phạm vi trong MPEG là các cấu hình, cấp độ và kỹ thuật bổ sung hỗ trợ các nhu cầu ngoài phát lại video của người tiêu dùng: [15]

  • Hồ sơ hỗ trợ độ sâu bit vượt quá 10 và độ sâu bit luma / sắc độ khác nhau.
  • Cấu hình nội bộ khi kích thước tệp ít quan trọng hơn tốc độ giải mã truy cập ngẫu nhiên.
  • Cấu hình Ảnh tĩnh, tạo thành cơ sở của Định dạng tệp hình ảnh hiệu quả cao, không có bất kỳ giới hạn nào đối với kích thước hoặc độ phức tạp của ảnh (mức 8,5). Không giống như tất cả các cấp độ khác, không yêu cầu dung lượng bộ giải mã tối thiểu, chỉ cần nỗ lực tốt nhất với dự phòng hợp lý.

Trong các cấu hình mới này có các tính năng mã hóa nâng cao, nhiều tính năng hỗ trợ mã hóa màn hình hiệu quả hoặc xử lý tốc độ cao:

  • Thích ứng gạo liên tục, tối ưu hóa chung của mã hóa entropy.
  • Dự đoán trọng số chính xác cao hơn ở độ sâu bit cao.[130]
  • Dự đoán thành phần chéo, cho phép giải mã màu YCbCr không hoàn hảo để cho phép khớp luma (hoặc G) đặt độ khớp màu dự đoán (hoặc R / B), giúp tăng 7% cho YCbCr 4: 4: 26% cho video RGB. Đặc biệt hữu ích cho mã hóa màn hình.[130][131]
  • Điều khiển làm mịn nội bộ, cho phép bộ mã hóa bật hoặc tắt làm mịn trên mỗi khối, thay vì trên mỗi khung.
  • Sửa đổi bỏ qua biến đổi:
    • DPCM dư (RDPCM), cho phép mã hóa dữ liệu còn lại tối ưu hơn nếu có thể, so với zig-zag điển hình.
    • Độ linh hoạt kích thước khối, hỗ trợ kích thước khối lên tới 32x32 (so với chỉ hỗ trợ bỏ qua chuyển đổi 4 x 4 trong phiên bản 1).
    • Xoay 4 x 4, cho hiệu quả tiềm năng.
    • Chuyển đổi bối cảnh bỏ qua, cho phép các khối DCT và RDPCM mang một bối cảnh riêng.
  • Xử lý chính xác mở rộng, cho phép giải mã video độ sâu bit thấp chính xác hơn một chút.
  • CABAC bỏ qua căn chỉnh, tối ưu hóa giải mã cụ thể cho cấu hình Intra thông lượng cao 4: 4: 4 16.

HEVC phiên bản 2 thêm một số thông báo tăng cường bổ sung (SEI):

  • Ánh xạ lại màu: ánh xạ không gian màu này sang không gian khác.[132]
  • Chức năng đầu gối: gợi ý để chuyển đổi giữa các dải động, đặc biệt là từ HDR sang SDR.
  • Làm chủ khối lượng màu hiển thị
  • Mã thời gian, cho học sinh lưu trữ

Phần mở rộng mã hóa nội dung màn hình

Các tùy chọn công cụ mã hóa bổ sung đã được thêm vào trong bản dự thảo tháng 3 năm 2016 của phần mở rộng mã hóa nội dung màn hình (SCC):[133]

  • Biến đổi màu thích nghi.[133]
  • Độ phân giải vector chuyển động thích ứng.[133]
  • Sao chép khối nội bộ.[133]
  • Chế độ bảng màu.[133]

Phiên bản ITU-T của tiêu chuẩn đã thêm các tiện ích mở rộng SCC (được phê duyệt vào tháng 12 năm 2016 và được xuất bản vào tháng 3 năm 2017) đã thêm hỗ trợ cho chức năng chuyển đổi Hybrid Log-Gamma (HLG) và ma trận màu ICtCp.[60] Điều này cho phép phiên bản thứ tư của HEVC hỗ trợ cả hai chức năng truyền HDR được xác định trong Rec. 2100.[60]

Phiên bản thứ tư của HEVC bổ sung một số thông tin tăng cường bổ sung (SEI) bao gồm:

  • Thông tin đặc điểm chuyển giao thay thế thông báo SEI, cung cấp thông tin về chức năng chuyển ưu tiên sử dụng.[133] Trường hợp sử dụng chính cho việc này sẽ là phân phối video HLG theo cách tương thích ngược với các thiết bị cũ.[134]
  • Môi trường xem môi trường xung quanh thông báo SEI, cung cấp thông tin về ánh sáng xung quanh của môi trường xem được sử dụng để tạo video.[133][135]

Tài liệu tham khảo

WikiPedia: Mã hóa video hiệu quả cao http://www.cnet.com.au/hevc-video-compression-coul... http://infoscience.epfl.ch/record/180494 http://infoscience.epfl.ch/record/200925 http://infoscience.epfl.ch/record/200925/files/art... http://newsroom.altera.com/press-releases/nr-harmo... http://www.anandtech.com/show/10610/intel-announce... http://www.anandtech.com/show/8526/nvidia-geforce-... http://www.anandtech.com/show/8811/nvidia-tegra-x1... http://www.anandtech.com/show/8923/nvidia-launches... http://appleinsider.com/articles/14/09/12/apples-i...